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Abstract

Accurate forecasting of demand is vital for a reliable and economically viable elec-
tricity network. With temperatures in NSW predicted to rise due to El Niño, there
will be increased importance in the future of accurate demand forecasting dur-
ing high temperatures. Accurate forecasting under high temperatures is especially
important from a network reliability perspective, since it is when demand is at
its peak. Despite this, the short-term demand values in NSW that are published
by AEMO (Autralia’s electricity regulator) perform poorly under these conditions.
While there is extensive research on demand forecasting generally, there is little
research that focuses specifically in the domain of high temperature observations.

This report outlines the development of a model that can be used to accurately
forecast electricity demand during high temperatures. The model is built for fore-
casting in NSW and provides both 30-minute and 1-hour forecasts. Data exploration
and feature selection plots were used to find the most influential model features,
which included demand lags, temperature lags and datetime features. XGBoost,
neural networks and LSTM networks were all tuned and compared. Loss functions
weighted by temperature were explored as a strategy to make up for the small
amount of training data available for high temperatures. The final model selected
was a 4-layer fully connected neural network with 50 nodes in each layer. The model
was trained with a mean squared error function weighted by temperature squared,
which successfully improved forecasting accuracy during high temperatures. This
model had much less error than the AEMO model for temperatures above 30oC,
with the mean average percentage error dropping from 2.07% to 1.30% for 30-minute
forecasts, and from 2.88% to 1.99% for 1 hour forecasts. The model also generalised
well, outperforming the AEMO model under most other temperature conditions as
well.
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Chapter 1

Introduction

Accurate short-term load forecasting (STLF) models are important for reducing
the costs of over or under-bidding supply contracts. This keeps the energy markets
efficient and ensures that the network reliability is maintained. There is a chain of
effects here - demand for energy drives prices and prices drive generation decisions
and so forecasts are also essential for energy supply systems to plan their generation
capacity and stability.

Intraday temperatures are strongly correlated with energy demand. With the
Australian Bureau of Meteorology forecasting a particularly severe El Niño this year
high temperatures are to be expected across the whole of the Australian continent
and are expected to become more frequent in the future. High temperatures reduce
transmission capabilities due to turbine inefficiencies at high ambient air temper-
atures. They impact the performance of transmission lines, transformers, circuit
breakers, and insulation. Energy demand for air cooling applications increase at the
same time. Although energy market operators commonly include climate related
variables in their forecasting models, the danger of interruptions to power supply
that continue across the world are an indication that these forecast models suffer a
drop in reliability during high temperatures similarly to the physical components of
the supply network. A review of the load forecast models for the Australian Energy
Market Operator (AEMO) reveal an increase in inaccuracies in high temperature
conditions. In fact analysis of research into forecast models reveals that more than
half of forecast models fail to meet forecast demand under extreme climate events.

This study attempts to provide a model that can be used to better forecast load
demand during times of high temperatures. Research indicates that high temper-
atures can be considered a time when the temperature is greater than or equal to
30oC. Improving the reliability of short term forecasts during high temperatures
will improve pricing efficiency, generation, transmission and network stability. This
model would be of use to registered participants in the National Electricity Market
(NEM) to assist with accurate pricing of generation time slots for traders or reallo-
cators and to improve capacity planning for network service providers. The model
is primarily focused on providing an accurate forecast 30 minutes ahead but it can
be used to forecast 1 hour ahead or slightly further with greater accuracy than the
existing publicly available forecasts.
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Chapter 2

Literature Review

2.1 Overview of Load Forecasting

Electric load forecasting has a long history (De Gooijer and Hyndman, 2006). Statis-
tical models - whether exponential smoothing or auto-regressive integrated moving
average (ARIMA) models were used for most of the 20th century. Pattern recogni-
tion techniques started to be proposed in the early 1980’s (Dehdashti et al., 1982)
and although machine learning models were being used in the mid 1990’s they were
not consistently outperforming ARIMA models for over a decade. More recently,
ensemble methods like Extreme Gradient Boosting models (XGBoost) and Artificial
Neural Networks (ANN) provide the most accurate forecasts (Raza and Khosravi,
2015) and form the basis of this study.

2.2 XGBoost Models

XGBoost has proven to be a highly effective model for load forecasting in recent
years as can be seen from the many studies that have sought to refine the model or
to test against when investigating new models(Abbasi et al., 2019), (Behera et al.,
2022) . The advantage it has over other boosting ensemble methods is that it avoids
over-fitting and complexity by adding a regularisation item to the loss function. It
uses a quadratic Taylor expansion to improve convergence and it performs column
sampling to speed up operations. The most important hyper parameters of the
model can be improved using grid search as shown by Tran et al. (2023).

The XGBoost Regression model has been used by many researchers for load
forecasting either on its own (Dong et al., 2023), (Jiang et al., 2023) or in combina-
tion with other algorithms – Li et al. (2023) combined using linear regression with
a Holt-Winters method. Wu et al. (2022) researched a Particle Swarm Optimisa-
tion – XGBoost model. Although XGBoost is a model that is easily deployed with
efficient computing time and memory resource usage, it does not always outper-
form other models. Gokce and Duman (2022) compared the performance of simple
regression models, random forest and XGBoost and found that XGBoost achieved
similar accuracy to the Random Forest models in their study. However Ibrar et al.
(2022) found that combining oversampling with their XGBoosting provided the
most accurate forecasts of any models they tried.

In this study the XGBoost model serves as a base model to benchmark the
performance of the AEMO forecast and the ANN models defined.
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2.3 Artificial Neural Networks and Long Short-Term Models

Neural networks have been shown in many studies to offer improved forecasting
accuracy for scenarios where domain knowledge is limited (Bianchi et al., 2017).
Recurrent neural networks such as long short-term models (LSTMs) are particularly
popular given their ability to retain knowledge from successive timestamps and
have been shown to achieve an accuracy of over 99% for ultra short-term electricity
demand forecasting (Tan et al., 2020). LSTMs are a special type of recurrent
neural network (RNN) which address the gradient disappearance problem that RNN
models can easily suffer from but as mentioned above, artificial neural networks
had not been used much until the past decade due to their computational demands.
The benefits of Moore’s Law together with network refinements have made LSTM’s
very popular models for load forecasting in recent times. Whereas other deep neural
networks with multiple layers may require expert knowledge in order to tune their
hyper-parameters Manandhar et al. (2023), LSTMs have proven themselves to be
flexible and easy to train.

Since 2018 (Bouktif et al., 2018), (Bedi and Toshniwal, 2018) Long Short-Term
Memory (LSTM) models have been found to provide more accurate forecasts than
other Recurrent Neural Networks (RNN). Other refinements were earlier tried like
fuzzy neural networks, wavelet neural networks and fuzzy wavelet neural networks
but LSTMmodels tested by Bedi and Toshniwal (2018) yielded better results. There
have been many other studies of the efficacy of LSTM models in the past 5 years
which indicate that the model trains well across a broad range of circumstances
(Bashari and Rahimi-Kian, 2020), (Son and Kim, 2020), (Adewuyi et al., 2020),
(Chen et al., 2022), (Chung and Jang, 2022).

2.4 Data Features

Many studies relied purely on the time series data of load demand itself, but con-
structing features within the time series helps to identify the non-stationary factors
of the demand load patterns. Tan et al. (2020) trained an LSTM using the hour of
the day, the month of the year and the day of the week. Fan et al. (2014) also found
that for the purpose of forecasting less than one day ahead that time lags up of be-
yond 15 days were not significant. Further, they found that in addition to lag data,
variables of month, day, weekday and meteorological data was needed for successful
forecasting. Removal of seasonality from the data has been an essential first step
in data preparation for many years whether using principal component analysis,
exponential smoothing or an auto-correlation function (Taylor et al., 2006).

Temperatures have the strongest direct but non-linear impact on load demand.
After temperatures, working day information seems to be the next most key fac-
tor in driving load demand. Importantly Zhang et al. (2013) noted the need to
train the model based on working days vs non-working days and to train them
based on the temperature, studying the correlation between load from day to day
separately for hot and cold seasons. Other weather factors such as rainfall rate,
or relative humidity or wind speed were found to have a significant correlation in
some geographies but not in others (Aisyah and Simaremare, 2021). In Sydney,
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Ahmed (Ahmed et al., 2018) noted that the mean daily air temperature is the best
indicator relating to energy demand. In addition to this correlation Ahmed found
that demand for electricity had a linear relation to the temperature variation from
a “balance point”. Deviation from this point defined a Cooling Degree Day or a
Heating Degree Day. Mean daily air temperature has been used as an indicator of
energy demand in other studies too (Jovanović et al., 2015), (Vu et al., 2014).

McCulloch and Ignatieva (McCulloch and Ignatieva, 2017) used a time weighted
temperature model which showed excellent forecast results based off just a single
temperature for the entire state of NSW. The temperature they used was in Home-
bush. For our research we are using temperatures based on Bankstown which in the
past 5 years is a closer approximation to the population centre of Greater Sydney,
the largest urban area in NSW representing about 61% of the population of the
NSW electricity demand area.

2.5 Data Sources

Ahmad et al. (2020) noted how the increase in smart meters and monitoring ap-
pliances has increased data availability to an unprecedented degree and are a core
component of the new smart grids that are increasingly common . However, this
data whilst helpful in achieving accurate forecasts that may be useful to building
owners or local infrastructure, and they have been used to accurately forecast de-
mand for individual households (Kong et al., 2019). For our purposes we have used
data from the Australia Energy Market Operator (AEMO) who are a semi govern-
ment institution in Australia responsible for the national market as it is hoped that
this data will generalise better. Using AEMO data also allows a better comparison
against other models as this has been used broadly for forecast models for many
years (Liu et al., 2022), (Al-Musaylh et al., 2018), (Zhang et al., 2013), (Ismail
et al., 2023), (Clements et al., 2016) among others.

2.6 Performance Measurement

Mean absolute percentage error is used as one of the key metrics because it can be
easily compared to other models regardless of the scale of units being measured.
This is a very commonly used metric in load forecasting studies (Hong and Fan,
2016) and suggested by Hyndman and Koehler (2006). We also use the root mean
square error (RMSE) and R2. RMSE is scale-dependent and R2 is commonly used
to determine goodness of fit. As a metric however MAPE can tend to favour
models that under-forecast rather than over-forecast (Lewinson, 2020). RMSE on
the other hand is highly affected by outliers and as such can be compared to MAPE
to determine whether the forecast contains large but infrequent errors (Manandhar
et al., 2023).

2.7 Conclusions

In summary, the key points that we took from our review are:
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• Model flexibility to handle the nonlinear pattern of demand under extreme
conditions (Both LSTM’s and XGBoost exhibit these capabilities).

• Removal of the cyclical nature of demand data.
• Consideration of non-working days to affect demand.
• Single temperature reading and State-wise load demand data is sufficient for
our modelling purposes.

• MAPE and RMSE as standard measures of error rates to allow easy compar-
ison.
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Chapter 3

Material and Methods

3.1 Software

In this analysis, Python served as the primary programming language since the
machine learning libraries were best suited for the model types selected for the
study. The following Python libraries were leveraged:

• Pandas for data manipulation and processing,
• NumPy for performing mathematical operations on our data,
• Matplotlib and Seaborn for creating a wide range of plots and charts,
• Pmdarima for examining stationarity in the data,
• Scikit-Learn for machine learning algorithms and model evaluation,
• Keras and keras tuner for building and training neural networks, and
• XGBoost for ensemble learning techniques.

The Python codes were written and executed interactively in Jupyter Note-
books, and the platform used to run Jupyter Notebooks was Google Colab.
These platforms were used since they offered useful features for collaborative pro-
gramming.

To track changes to the codes in the Jupyter Notebooks over time, the version
control system used wasGit, and the platform where the code repository was hosted
is GitHub.

3.2 Description of the Data

There were three main data sets used to train and evaluate the models:

• totaldemand nsw.csv, contains electricity demand values (in MegaWatts) for
NSW (43.915 MB);

• temperature nsw.csv, contains temperature data from Bankstown airport
(8.195 MB); and

• forecastdemand nsw.csv, contains AEMO short term forecasts for power de-
mand in NSW, typically ranging from half an hour to 1.5 days prior. (769.555
MB)

AEMO uses the term ‘Total Demand’ for various types of demand. In this
analysis, the field ‘Total Demand’ is referred to as the forecasted electricity demand
at the Regional Reference Node (RRN). It includes local generation, interconnector
imports, and wholesale demand response but excludes local scheduled loads and
allocated interconnector losses. The NEM Dispatch Engine (NEMDE) calculates
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Total Demand, serving as the starting point for central dispatch, which determines
regional prices and dispatch targets for generating units.

A more detailed description of the data is available in the data dictionaries in
Appendix B – Data Summaries, and the process of transforming the data so that
they become use-able is discussed in the next section.

3.3 Pre-processing Steps

3.3.1 Demand Data

Historical electricity demand data sets were sourced and utilised. The Demand
data set comprised of historical half-hourly data spanning from January 2010 to
July 2022. This data set underwent a thorough analysis to identify potential data
entry errors, including missing, implausible, or duplicate entries. No missing or
implausible values were identified. Thirty-nine duplicate entries were discovered
and were subsequently removed. Additionally, the number of observations per date
was examined to ensure consistency with the expected 48 half-hourly periods. Data
for the date 2022-08-01 was removed as only one period (midnight) was recorded.

All data were verified to be in their correct data types. Datetime variables were
converted to the datetime data type to ensure proper handling by Python.

Eleven lag variables were created for the forecasting model that represent the
last 10 prior values of demand (‘DEM - 1’ to ‘DEM - 10’) and the demand recorded
24 hours prior (‘DEM - 48’). One lead variable was created (‘TOTALDEMAND +
1’) that represents the value of total demand an hour into the future, so that both
30-minute and 1-hour forecasts could be made.

3.3.2 Temperature Data

The temperature data set consisted of datetime entries at 30-minute intervals span-
ning from January 2010 to July 2022, featuring temperature measurements in de-
grees Celsius along with corresponding measurement locations. The data set in-
cluded 19 temperature outliers recorded at -9999oC, necessitating removal or re-
placement. Additionally, upon inspection, it was determined that although there
are no missing values (NaN), several expected datetime indexes are absent, suggest-
ing the absence of certain data rows. Linear interpolation methods were utilised to
fill in these missing values before model training.

Four lag variables were created that represent the last 4 prior values of temper-
ature (‘TEMP - 1’ to ‘TEMP - 4’).
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3.3.3 Forecast Data

The forecast data set consisted of datetime entries at 30-minute intervals spanning
from January 2010 to July 2022. Each datetime entry was repeated 71 times, corre-
sponding to forecasts made at different time horizons. No null values or duplicates
values were present in the data set.

The forecast data set was filtered for forecasts that had a period ID of 1 or
2, since these corresponded to the 30-minute and 1-hour predictions that could be
used for comparison against the models developed during this study. This infor-
mation was then processed so that it was in the same form as the demand dataset,
having a ‘FORECASTDEMAND’ column containing the 30-minute forecasts, and
the ‘FORECASTDEMAND + 1’ column containing the one hour forecasts.

3.4 Data Cleaning

3.4.1 Missing Values

To verify that data was fully recorded every half hour, a datetime series was created
and joined with our data sets. This analysis revealed no missing total demand values
(in 30-minute intervals), but there were 3,737 missing forecast demand values and
689 missing temperature values.

To ensure consistent datetime records, these missing values were populated using
linear interpolation with the following steps:

1. A sequence of datetime values at 30-minute intervals starting from 1 January
2010 to 1 August 2022 was generated.

2. The forecast demand data was merged with the datetimes dataframe using
a right join ensuring timestamps for all periods. Missing demand data was
assigned NaN values in the merged dataframe.

3. Datetimes with missing forecast demand data were identified.
4. Temperature data was merged with the datetimes dataframe using a right

join.
5. Datetimes with missing temperature data were identified.
6. Missing temperature values were populated in the new temperature data

dataframe using linear interpolation based on the surrounding temperature
values.

3.4.2 Outliers

Summary statistics and data visualisation (both univariate and bivariate) were used
to identify outliers in the data set and to gain insights into the distribution of the
data. The only significant outliers found were in the temperature data set. Nineteen
temperatures recorded at -9999oC were found and removed from the temperature
data set.
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3.5 Assumptions

Key assumptions in the analysis based on the available data were:

• Temperature data gathered from Bankstown airport was representative of the
temperature conditions for the NSW region.

• Missing temperature values could be reasonably estimated through linear in-
terpolation.

• Forecast demand data provided was reliable and complete. Information from
this forecast demand data set was only considered when comparing the mod-
els’ performance against AEMO’s forecasts.

3.6 Modelling Methods

XGBoost and ANN / LSTM were found to exhibit flexibility to handle the nonlinear
pattern of demand under extreme conditions. Hence, these models were selected
for this study.

XGBoost is an ensemble learning method that combines the predictions of mul-
tiple weaker models (decision trees) to create a stronger, more robust model. This
ensemble approach was selected to reduce bias and variance in predictions. It also
provides a feature importance score, which helps highlight the factors or features
which are most influential in predicting electricity demand.

LSTM networks are designed to handle sequential data, making them well-suited
for time series forecasting tasks. This type of recurring neural network was selected
as electricity demand data is inherently sequential, with dependencies on historical
time steps, and LSTMs can capture these temporal patterns effectively. ANNs,
while not specifically designed for sequential data, offered a simpler neural network
structure that could be trained much faster than LSTMs.

More details on the analysis and evaluation of these modelling methods are
discussed in Section 5 – Analysis and Results.
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Chapter 4

Exploratory Data Analysis

After the initial data cleaning and pre-processing, an exploratory data analysis
(EDA) was conducted on all primary data sets used in this research. The objective of
this exercise was to acquire a deeper understanding of the underlying data structure,
their distributions, and the potential presence of errors or outliers. Additionally,
the EDA facilitated the identification of trends and relationships between variables
across different data sets, enabling the formulation of appropriate and well-justified
assumptions before proceeding with modelling.

The source code for the results in this section can be accessed on our GitHub
Repository. Please refer to Appendix 7.1 Codes – Data Cleaning and Exploration.
In addition to the EDA shown in chapter 4, this file also outlines the data visuals
and summaries that were used to clean and process the data as described in sections
3.3 and 3.4.

4.1 Inspecting the Processed Data

After the data was cleaned, raw data was visualised to confirm that there were
no longer any univariate or bivariate outliers in the processed data. Figure 4.1
demonstrates there are no significant outliers remaining in the temperature or de-
mand columns of the data and also confirms that there is a significant relationship
between temperature and demand that needs to be considered when modelling.

10



Figure 4.1: Pairwise Relationship between Demand and Temperature

Figure 4.2 shows that there are no obvious missing values across the date range
of the processed data. The periodic nature of the plot shows that datetime features
would have to be considered in the model.

Figure 4.2: Data Spread of Total Demand and Temperature
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4.2 Exploring the Relationship between Features and Demand

4.2.1 Demand Throughout the Day

Figure 4.3 shows how electricity demand varies throughout the day. There is a
clear pattern demonstrated that indicates that it would be an important feature
to include in the model. The dip in demand in the middle of the day is especially
important, since it is primarily caused by solar PV usage which is not available in
our training data.

Figure 4.3: Hourly Mean of Demand

4.2.2 Demand on Different Months of the Year

Figure 4.4 shows the average electricity demand by month using a box plot. This
helps to understand how electricity demand varies throughout the year, and that
there is a seasonal pattern as seen by the increase in demand during the summer
and winter months.

12



Figure 4.4: Average Yearly Demand by Month

4.2.3 Demand on Working Days and Non-Working Days (Weekends and Public
Holidays)

Electricity demand may be influenced by weekends and public holidays due to
distinct usage patterns that deviate from the normal working hours. This variation
was considered a potential feature for the models.

Figure 4.5 shows a box plot depicting demand levels on working days and non-
working days, which consists of both weekends and public holidays. Notably, work-
day demand consistently surpasses that of non-workdays throughout all years. This
figure also indicates that the year has a noticeable effect on demand; a topic that
is explored more robustly in section 4.2.5.

Figure 4.5: Box Plot of Demand: Workday vs Non-Workday
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4.2.4 Demand Autocorrelation over One Day

The autocorrelation plot (ACF plot) in Figure 4.6 shows how demand is correlated
with itself at different time intervals or lags. The x-axis of the plot represents the
48 30-minute time lags at which the autocorrelation is calculated, while the y-axis
represents the the degree of correlation. The autocorrelation values decay until the
middle of the series where it starts to increase again, which suggests a periodic
behavior in the demand data from day to day. On the basis of this figure, it would
be important to include multiple of the most recent lag features for demand, since
these are most strongly correlated with current demand. It would also potentially
be useful to include a demand lag from a day (48 periods) prior due to its strong
correlation.

Figure 4.6: Auto-correlation between 30 min lags across 24 hours

4.2.5 Seasonal Decomposition

Figure 4.7 shows a seasonal decomposition of the Total Demand time series data to
identify patterns, trends, and seasonal effects. The year on year decline shown in
the trendline is contrary to expectations but is likely to be caused by the increase
in rooftop solar supply and alternative energy sources that reduce the total demand
at the NEM level.

14



Figure 4.7: Patterns extracted from observed values showing year by year trend,
seasonal cycles and remaining residuals

4.3 AEMO Forecasting Accuracy in High-temperature Conditions

The forecasting accuracy from AEMO’s model was explored to see how accurate it
was at demand forecasting in high temperature conditions. Figure 4.8 shows that
the model performs worse for high-temperature observations, with temperatures>=
30oC having significantly higher errors (on average) than more normal temperatures.
Figure 4.9 demonstrates that the AEMO model generally under-estimates forecasts
during high temperatures, whereas the bias for normal temperatures is close to zero.
It was found that only 1.4% of the observations from 2010 to 2022 were in this high-
temperature range. This could explain why AEMO’s predictions are worse - it is
favouring more accurate forecasts for temperature ranges which are most prevalent
in the data (the 10oC - 30oC range).
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Figure 4.8: Mean Absolute Error of AEMO Demand Forecasts by Temperature

Figure 4.9: AEMO Demand Forecasting Bias by Temperature

16



Chapter 5

Analysis and Results

5.1 Modelling Details

There were a number of characteristics each model shared in common to ensure
accurate comparisons could be made. Each model shared the same train-test splits,
with the final two years of the data being used for testing, and the prior observations
being used as training data, as shown in Figure 5.1.

Figure 5.1: Train/Test split that was used for the demand forecasting models

Each model had 19 input features:

• The 10 previous demand values (in half-hourly intervals)
• The demand observed 24 hours ago
• The 4 previous temperature values (in half-hourly intervals)
• Hour of the day
• Workday
• Month
• Year

There were two target variables for each models:

• TOTALDEMAND: the demand 30 minutes after the most recently observed
demand and temperature.

• TOTALDEMAND + 1: the demand one hour after the most recently observed
demand and temperature.

Finally, each model type shared the same loss function with mean squared error
being used as the loss function for all baseline models.
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5.2 XGBoost Model

The first baseline model was created using XGBoost, an ensemble learning method
capable of capturing non-linear relationships as in electricity demand. As XGBoost
has the ability to provide a feature importance score, this was leveraged to determine
the importance of the features within the data set. This prioritises features that
hold the highest importance for both training and testing.

5.2.1 Feature Importance

Figure 5.2 represent the feature importance based on the F-score metric. The F-
score is a statistical measure that evaluates the significance of a feature in predicting
the target variable. It is calculated based on the analysis of variance (ANOVA)
between different feature categories.

The features listed on the y-axis represent the variables or attributes used in
the data set. Each feature has an associated F-score. Features with higher F-scores
are more influential in predicting the target variable and contribute significantly to
the model’s decision-making process. Conversely, features with lower F-scores are
less relevant or informative.

As shown by the bars in graph below, the feature that contributed most to the
model’s performance is the HOUR of the day, followed very closely by DEM - 1, or
the energy demand captured half an hour ago, with one period being equivalent to
half an hour. The scores also showed that none of the features had a significantly
low importance that would necessitate their removal from the model.

Figure 5.2: Plot showing the relative importance of features in training the XGBoost
model
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5.2.2 Hyperparameters Tuning

In forecasting with XGBoost, hyperperameters need to be fine tuned to achieve the
best model performance. In this study, the algorithms that were used to determine
these optimal hyperparameters were RandomizedSearch CV and GridSearch CV.

RandomizedSearchCV efficiently explores the hyperparameter space without re-
quiring an exhaustive search. It helps manage computational resources by randomly
sampling a subset of hyperparameter combinations, making it feasible to conduct
hyperparameter tuning even with limited resources.

For this XGBoost model, a parameter distribution was used to sample the num-
ber of estimators (100 to 1000). During hyperparameter tuning, the code randomly
selected values from this range. An XGBoost regressor object was then created with
GPU acceleration (i.e., device is set to “cuda”) and a K-Fold cross-validation was
setup with 5 splits. The scoring metric used for model evaluation was the negative
mean squared error.

Figure 5.3 shows how improvements in accuracy decrease with an increasing
number of estimators. This helps select a level that will avoid over-fitting the
model.

Figure 5.3: Random Search Cross Validated Error Scores

GridSearchCV offers a more comprehensive and systematic way to explore var-
ious hyperparameter combinations. This is particularly important in forecasting
because time-series data can have unique patterns and dependencies that require
specific model configurations.

For this XGBoost model, a range of values were specified for the hyperparam-
eters ‘max depth’ and ‘number of estimators’. A K-Fold cross-validation object
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(cv) was created with 5 splits, and a grid search was initialised to perform hyper-
parameter tuning. The grid search aimed to minimise the negative mean squared
error.

Figure 5.4 shows how increasing the depth the model trees decreases the learning
curve of the model to prevent over-fitting.

Figure 5.4: Grid Search Cross Validated Error Scores

The source code for the results of this XGBoost model can be accessed on our
GitHub Repository. Please refer to Appendix 7.2 Codes - XGBoost Model.

5.3 Neural Network and LSTM Models

Two different neural network models were created to forecast electricity demand.
The first model was a standard sequential neural network. The second model fea-
tured LSTM cells. LSTM cells are purpose-built for analysing sequential data given
they have gates that can help to remember and forget information. This model
would treat the demand and temperature lags as sequences, whereas the standard
neural network treats them as independent parameters.

Values in both models were standardised with normal scaling. Through testing,
this was found to produce more accurate results than using unscaled data or min-
max scaled data.

Hyperparameters for both models were selected with the Keras tuner using the
hyperband method, which aims to find the best combination of parameters without
testing every single combination possible. It offers the time benefits of a randomised
search along with the optimsing power of a grid search. The parameters that were
tuned were:
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• Number of hidden layers: 2, 3, 4. For the LSTM model only 2 was selected
due to training time constraints.

• Learning rate: 1e-4, 1e-3, 1e-2
• Number of nodes per hidden layer: 20, 50, 100
• Regularization parameter: 1e-5, 1e-4, 1e-3

The parameters selected as a result of tuning are shown in Table 5.1.

Table 5.1: Hyperparameters chosen for neural networks as a result of tuning.

Parameter Neural Network LSTM Network
Hidden layers 4 2
Learning rate 1e-3 1e-3

Nodes per hidden layer 50 50
L2 regularisation constant 1e-5 1e-5

Some parameters were pre-selected to minimise training time. The most notable
of these were:

• Activation functions: ReLu activations were chosen for all hidden layers.
• Optimizer: Adam was chosen.
• Batch size: The default setting was used.
• Max epochs: 20 was selected as the maximum number of epochs, with early
stopping implemented in the event the validation error began to increase.

The source code for the results of this Neural Network and LSTM model can be
accessed on our GitHub Repository. Please refer to Appendix 7.3 Codes – Neural
Network Model.

5.4 Model Comparisons

A comparison between the base models created: the XGBoost model, the standard
neural network and the LSTM network, is found in Tables 5.2 and 5.3. The re-
sults show that all three models were considerably better at forecasting than the
AEMO model - both generally and for high temperature conditions. The difference
was more drastic for high temperatures, indicating that the models created did a
better job than AEMO of catering for hot conditions. There was still a noticeable
increase in error across all models when moving from general performance to high
temperature performance.

Comparing the three base models, the two neural networks had comparable per-
formance, with the LSTM having slightly better accuracy for half-hour predictions,
while the standard neural network has better accuracy for one hour forecasts. The
XGBoost model was slightly less accurate than the neural networks. When focusing
on high-temperature test data, the LSTM model had slightly better results than
the neural network and significantly better results than the XGBoost model.
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Table 5.2: Comparison of Model Performance for Test Data

Forecast Metric AEMO XGBoost Neural Network LSTM
Half hour MAE 120.66 96.16 90.36 86.46

MAPE 1.56 1.30 1.20 1.14
RMSE 153.60 136.36 121.25 117.16
R2 0.9848 0.9880 0.9905 0.9911

Hour MAE 139.00 139.99 129.87 135.93
MAPE 1.79 1.87 1.70 1.79
RMSE 181.10 196.82 180.81 189.68
R2 0.9788 0.9750 0.9789 0.9767

Table 5.3: Comparison of Model Performance for Test Data where Temperature
>= 30oC

Forecast Metric AEMO XGBoost Neural Network LSTM
Half hour MAE 193.30 176.33 124.00 124.40

MAPE 2.07 1.95 1.34 1.34
RMSE 230.38 255.45 196.51 170.83
R2 0.9762 0.9708 0.9827 0.9869

Hour MAE 272.91 322.95 205.48 196.01
MAPE 2.88 3.35 2.18 2.10
RMSE 350.61 471.47 324.20 304.77
R2 0.9415 0.8941 0.9499 0.9558

5.5 Improving Models for Demand Forecasts during High
Temperatures

The modelling so far has focused on improving forecasting accuracy generally. The
models have offered improved forecasting that the AEMO forecasts: both generally
and during high temperatures. The models are all predicting demand under high-
temperatures more poorly than they do generally - most likely because of the small
sample size of high-temperature observations in the training data.

A common strategy for dealing with a class imbalance problem is to apply a
weighted loss function, giving a higher emphasis on minimising the loss of certain
observations in the data. In this case, a MSE loss function weighted by temperature
was implemented.

The form of the loss function was:

1

n

n∑
i=1

[
f(T )× (ypred − yobs)

2]
where f(T ) is a function of temperature which is always non-negative. If the weight-
ing was ever negative, then the model would reduce loss by increasing the error,
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which is very undesirable. A simple way to ensure non-negative weightings was to
subtract the minimum temperature from each temperature.

f(T ) = T − Tmin

This could be left as is, or it could also be exponentiated to increase the effect of
the weightings (e.g. could square the weightings).

The loss functions that were linearly weighted by temperature were found to
have a minor effect on model performance, but in most cases resulted in slight im-
provement at forecasting during high temperatures. Results for these are presented
in Figures 5.5 and 5.6.

Figure 5.5: Half-hour forecasting error comparison between base NN model and the
same model with a loss weighted by temperature
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Figure 5.6: Half-hour forecasting error comparison between base LSTM model and
the same model with a loss weighted by temperature

The loss functions that weighted the loss by temperature squared had a more
significant effect on reducing forecasting error under high temperatures, with the
trade-off of having worse forecasting performance for low temperature observations.
This can be seen in Figures 5.7, and 5.8.

Figure 5.7: Half-hour forecasting error comparison between base NN model and the
same model with a loss weighted by temperature squared
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Figure 5.8: Half-hour forecasting error comparison between base LSTM model and
the same model with a loss weighted by temperature squared

Comparing the metrics, it was found that the neural network weighted by tem-
perature squared had the best performance under high-temperatures, with the low-
est error of all the models for both half-hour and hour forecasts. It also had better
overall performance, with lower forecasting errors except for cold temperatures be-
low 10oC. Metrics for this best model are shown in 5.4.

Table 5.4: Comparison of Specialised Model Performance for Test Data where Tem-
perature >= 30oC

Forecast Metric AEMO Base Neural Network Specialised Neural Network
Half hour MAE 193.30 124.00 120.37

MAPE 2.07 1.34 1.30
RMSE 230.38 196.51 194.83
R2 0.9762 0.9827 0.9829

Hour MAE 272.91 205.48 187.50
MAPE 2.88 2.18 1.99
RMSE 350.61 324.20 300.90
R2 0.9415 0.9499 0.9568

Another strategy that was trialled to improve performance under high-temperatures
was to limit the training data to just high-temperature observations. The thought
was that this might give better results for high-temperature conditions, but would
generalise very poorly given it was not trained on any normal or cool tempera-
ture data. When testing this, the model was found to have very poor generalised
performance as expected, but it also had much worse performance under high tem-
peratures.
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5.6 Final Model Details

The best performing model out of all the options tested was a 4-layer fully connected
neural network with 50 nodes per hidden layer. The neural network was trained
with the Adam optimiser using a learning rate of 0.001 and a L2 regularisation
constant of 1e-05. A mean square error weighted by temperature squared was used
as the loss function during training.

Comparing the model performance to the AEMO forecasts, there is a significant
improvement in accuracy. One of the main issues with the AEMO forecasts for
high temperatures is that they were biased and generally under predicted demand.
Figure 5.9 demonstrates that the best model has almost no bias associated with it,
with the points tightly bunched along the y = x line. There is one outlier present in
the best model for 30-minute forecasts that was not present in the AEMO model.

Figure 5.9: Comparing the predicted demand to the actual demand for the final
model and for the AEMO model.

Comparing how the model errors vary as a function of temperature, Figures
5.10 and 5.11 show that the final model outperforms AEMO under all temperature
conditions for 30-minute forecasts. The final model outperforms AEMO for most
temperatures, with a noticeable improvement during hot temperatures. The only
area where the final model is worse than AEMO is for one hour forecasts in very
cold conditions. This is to be expected since our model is not designed for demand
forecasting in these conditions.
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Figure 5.10: Forecasting errors for 30-minute forecasts for the selected model and
for the AEMO model.

Figure 5.11: Forecasting errors for 1 hour forecasts for the selected model and for
the AEMO model.

The model predictions across a sample week in the test data are shown in Figures
5.12 and 5.13. The sample week was chosen to be in summer (the first 7 days of
January) so that temperatures would be relatively high. The sample predictions
look very accurate for 30-minute forecasts. There is slightly lower accuracy for
1 hour forecasts, but it still appears to be in an acceptable range. The largest
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errors tend to appear at turning points in the demand. The model tends to slightly
over-estimate the peak demand values each day.

Figure 5.12: Sample week of 30-minute forecasts from the best model.

Figure 5.13: Sample week of 1 hour forecasts from the best model.
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Chapter 6

Discussion

6.1 Model Performance Compared to AEMO Forecasts

Every tuned model that was created out-performed the AEMO forecasts compre-
hensively - both generally and for high-temperature observations. This result is
unsurprising given the models were all more sophisticated than the AEMO model.
The AEMO model is trained only using previous demand values, whereas these
models are multivariate and consider additional information such as temperature
and datetime properties. The AEMO model is also very simple, being a neural net-
work with a single hidden layer containing 4 nodes. The machine learning methods
employed in this report were deeper learning methods that were able to detect more
complicated trends in the data.

6.2 Performance of Different Model Types

Comparing the three model types explored, the neural networks (ANN and LSTM)
had fairly comparable performance to each other. It was expected that the LSTM
model would perform better given it is more complex, can capture time related
dependencies, and was so extensively featured when researching demand forecasting.

One challenge for the LSTM model is that some, but not all of the features
were time related. The demand lags and temperature lags featured time dependant
information, but the datetime features (e.g. hour, month) do not require lags -
they are deterministic and known ahead of time. For the purpose of this project a
simple LSTM model was used, which was fed all the features as a time series. One
approach that could perhaps offer improvement may be a hybrid model approach,
where LSTM networks are used to handle the time-dependancies between the lag
variables and a traditional neural network is used to handle all the datetime features.
Another challenge of the LSTMmodel was the training time. The increased training
time meant that deeper networks and more epochs were not explored.

The XGBoost model performed slightly worse than the other models. Despite
this, it was still a very useful model to build, with its feature importance plots pro-
viding crucial information about the value of each feature in the model. Throughout
the project, this tool was used to help decide which features would be included in
the final models.
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6.3 Specialising the Model for Forecasting during High
Temperatures

The weighted loss functions that were investigated to improve forecasting under
high temperatures ended up having a small, but typically positive effect on model
performance. It was a bit surprising that the linear weighting functions had such
a small effect how the forecasting accuracy varied with temperature. It seems that
there were so little hot temperatures in the >= 30oC range that a heavier weighting
needed to be applied to considerably shift the model error distribution.

Another result that was somewhat surprising was that the weighted loss func-
tions had a very small impact on general forecasting accuracy, and in some cases
were able to improve it. It would have been expected that the traditional RMSE loss
function would perform better for general performance (all temperatures). Since
the general performance between RMSE and the weighted RMSE models was so
similar, it is possible that the differences in errors are due to randomness and are
not statistically significant.

The strategy of restricting the training data to only contain high temperature
observations generalised poorly as expected, but also did more poorly on hot tem-
peratures than simply training on all of the training data. This can mainly be
attributed to the training sample size - with only 1.4% of observations having hot
temperatures, there were very little observations in the training data when filtering.
This approach also has the downside of class imbalance when it comes to datetime
features. For example, filtering for hot temperatures would primarily present data
in summer months. The model would not know how to make predictions in other
months since there are little to no details provided in the training data.

6.4 Final Model Performance and Areas for Improvement

The performance of the final model was clearly a drastic improvement over the
AEMO forecasting model. The final model performance was better generally, but
was especially more accurate during high temperatures which was the goal of the
model. One reason the final model was so much better than the AEMO forecasts
was that it had close to zero bias in its predictions, whereas the AEMO forecasts
underestimate demand during high temperatures on average.

Despite the large improvements offered over the AEMO forecasts, it is notable
that the final specialised model still had slightly higher errors under high tem-
peratures compared to the middling temperature range close to 20oC. While not
explored during this project, it is possible that resampling techniques could be used
to further minimise this difference. This could result in synthetically creating more
high temperature data for the models to be trained on.
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Chapter 7

Conclusion and Further Issues

The aim of this report was to develop a model that would accurately predict short-
term demand forecasts during high temperatures. Through testing different ma-
chine learning models and training processes, several models were developed that
were able to achieve higher accuracy in these conditions. The best performing
model of the options tested was a 4 layer neural network that featured a mean
square error loss function that was weighted by temperature squared. This model
was significantly more accurate than AEMO’s model during high temperatures,
with a mean absolute percentage error of 1.30% compared to AEMO’s 2.07% for
30-minute forecasts. This model also had strong generalised performance, meaning
it could reliably be used for forecasting under most temperature conditions.

It is recommended that this best performing model be used for short-term de-
mand forecasting in NSW moving forward. This model significantly outperforms
the forecasts provided by AEMO and this gap is expected to grow even further
given the predicted rising temperatures due to El Niño. The model will output a
30-minute forecast and a 60 minute forecast for demand. The model has been saved
on GitHub under the name ‘demand forecast model.keras’.

There are many further studies that are suggested that have not been covered
in this report:

• Resampling techniques such as block bootstrapping could be explored as an
alternative strategy to improving forecasts during high temperatures.

• Different forecasting horizons (e.g. 1 day, 1 week) could be explored based on
the needs of suppliers and regulators.

• One significant feature not contained in the current model is the use of solar
PV. With this expected to grow, it would be worthwhile exploring how this
effects demand, and whether its inclusion in a model could improve forecasting
accuracy.

• While this study focused on high-temperatures, many of the strategies em-
ployed could be used to produce more accurate forecasts during cold temper-
atures also. Demand is high during cold temperatures, so this could be useful
for suppliers and regulators that are interested in peak demand values during
winter.

31



References

Abbasi, R.A., Javaid, N., Ghuman, M.N.J., Khan, Z.A., Ur Rehman, S., Aman-
ullah, 2019. Short Term Load Forecasting Using XGBoost, in: Barolli, L.,
Takizawa, M., Xhafa, F., Enokido, T. (Eds.), Web, Artificial Intelligence and
Network Applications, Springer International Publishing, Cham. pp. 1120–1131.
doi:10.1007/978-3-030-15035-8_108.

Adewuyi, S., Aina, S., Oluwaranti, A., 2020. A DEEP LEARNING MODEL FOR
ELECTRICITY DEMAND FORECASTING BASED ON A TROPICAL DATA.
Applied Computer Science 16, 5–17. doi:10.35784/acs-2020-01.

Ahmad, T., Zhang, H., Yan, B., 2020. A review on renewable energy and electricity
requirement forecasting models for smart grid and buildings. SUSTAINABLE
CITIES AND SOCIETY 55, 102052. URL: https://www.webofscience.com/
wos/woscc/summary/d82d32a2-f340-4b13-b911-0b02e159d69c-a40758f3/

times-cited-descending/1, doi:10.1016/j.scs.2020.102052.
Ahmed, T., Vu, D.H., Muttaqi, K.M., Agalgaonkar, A.P., 2018. Load forecasting
under changing climatic conditions for the city of Sydney, Australia. Energy
142, 911–919. URL: https://www.sciencedirect.com/science/article/pii/
S0360544217317759, doi:10.1016/j.energy.2017.10.070.

Aisyah, S., Simaremare, A., 2021. Correlation between Weather Variables and
Electricity Demand. IOP Conference Series: Earth and Environmental Science
927, 012015. doi:10.1088/1755-1315/927/1/012015.

Al-Musaylh, M.S., Deo, R.C., Adamowski, J.F., Li, Y., 2018. Short-term elec-
tricity demand forecasting with MARS, SVR and ARIMA models using aggre-
gated demand data in Queensland, Australia. Advanced Engineering Informat-
ics 35, 1–16. URL: https://www.sciencedirect.com/science/article/pii/
S1474034617301477, doi:10.1016/j.aei.2017.11.002.

Bashari, M., Rahimi-Kian, A., 2020. Forecasting Electric Load by Aggregating Me-
teorological and History-based Deep Learning Modules, in: 2020 IEEE Power &
Energy Society General Meeting (PESGM), pp. 1–5. doi:10.1109/PESGM41954.
2020.9282124.

Bedi, J., Toshniwal, D., 2018. Empirical Mode Decomposition Based Deep Learning
for Electricity Demand Forecasting. IEEE Access 6, 49144–49156. doi:10.1109/
ACCESS.2018.2867681.

Behera, D.K., Das, M., Swetanisha, S., Nayak, J., 2022. XGBoost regres-
sion model-based electricity tariff plan recommendation in smart grid en-
vironment. International Journal of Innovative Computing and Applica-
tions 13, 79–87. URL: https://www.proquest.com/docview/2673615626/

2B4459B91E9F47B5PQ/6, doi:10.1504/IJICA.2022.123223.
Bianchi, F.M., Maiorino, E., Kampffmeyer, M.C., Rizzi, A., Jenssen, R., 2017. An
Overview and Comparative Analysis of Recurrent Neural Networks for Short

32

http://dx.doi.org/10.1007/978-3-030-15035-8_108
http://dx.doi.org/10.35784/acs-2020-01
https://www.webofscience.com/wos/woscc/summary/d82d32a2-f340-4b13-b911-0b02e159d69c-a40758f3/times-cited-descending/1
https://www.webofscience.com/wos/woscc/summary/d82d32a2-f340-4b13-b911-0b02e159d69c-a40758f3/times-cited-descending/1
https://www.webofscience.com/wos/woscc/summary/d82d32a2-f340-4b13-b911-0b02e159d69c-a40758f3/times-cited-descending/1
http://dx.doi.org/10.1016/j.scs.2020.102052
https://www.sciencedirect.com/science/article/pii/S0360544217317759
https://www.sciencedirect.com/science/article/pii/S0360544217317759
http://dx.doi.org/10.1016/j.energy.2017.10.070
http://dx.doi.org/10.1088/1755-1315/927/1/012015
https://www.sciencedirect.com/science/article/pii/S1474034617301477
https://www.sciencedirect.com/science/article/pii/S1474034617301477
http://dx.doi.org/10.1016/j.aei.2017.11.002
http://dx.doi.org/10.1109/PESGM41954.2020.9282124
http://dx.doi.org/10.1109/PESGM41954.2020.9282124
http://dx.doi.org/10.1109/ACCESS.2018.2867681
http://dx.doi.org/10.1109/ACCESS.2018.2867681
https://www.proquest.com/docview/2673615626/2B4459B91E9F47B5PQ/6
https://www.proquest.com/docview/2673615626/2B4459B91E9F47B5PQ/6
http://dx.doi.org/10.1504/IJICA.2022.123223


Term Load Forecasting. URL: http://arxiv.org/abs/1705.04378, doi:10.
1007/978-3-319-70338-1, arXiv:1705.04378.

Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A., 2018. Optimal Deep Learning
LSTM Model for Electric Load Forecasting using Feature Selection and Ge-
netic Algorithm: Comparison with Machine Learning Approaches. Energies
11, 1636. URL: https://www.proquest.com/docview/2108519352/abstract/
1E240A87773F4682PQ/1, doi:10.3390/en11071636.

Chen, X., Gupta, L., Tragoudas, S., 2022. Improving the Forecasting and Clas-
sification of Extreme Events in Imbalanced Time Series Through Block Resam-
pling in the Joint Predictor-Forecast Space. IEEE Access 10, 121048–121079.
doi:10.1109/ACCESS.2022.3219832.

Chung, J., Jang, B., 2022. Accurate prediction of electricity consumption us-
ing a hybrid CNN-LSTM model based on multivariable data. PLOS ONE 17,
e0278071. URL: https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0278071, doi:10.1371/journal.pone.0278071.

Clements, A., Hurn, A., Li, Z., 2016. Forecasting day-ahead electricity load us-
ing a multiple equation time series approach. European Journal of Operational
Research 251, 522–530. URL: https://linkinghub.elsevier.com/retrieve/
pii/S0377221715011698, doi:10.1016/j.ejor.2015.12.030.

De Gooijer, J.G., Hyndman, R.J., 2006. 25 years of time series forecasting. Interna-
tional Journal of Forecasting 22, 443–473. URL: https://www.sciencedirect.
com/science/article/pii/S0169207006000021, doi:10.1016/j.ijforecast.
2006.01.001.

Dehdashti, A.S., Tudor, J.R., Smith, M.C., 1982. Forecasting of Hourly Load by
Pattern Recognition??? a Deterministic Approach. IEEE Power Engineering Re-
view PER-2, 47–48. URL: http://ieeexplore.ieee.org/document/5519486/,
doi:10.1109/MPER.1982.5519486.

Dong, D., Wen, F., Zhang, Y., Qiu, W., 2023. Application of XGboost in
Electricity Consumption Prediction, in: 2023 IEEE 3rd International Confer-
ence on Electronic Technology, Communication and Information (ICETCI), pp.
1260–1264. URL: https://ieeexplore.ieee.org/document/10176934, doi:10.
1109/ICETCI57876.2023.10176934.

Fan, C., Xiao, F., Wang, S., 2014. Development of prediction models
for next-day building energy consumption and peak power demand using
data mining techniques. Applied Energy 127, 1–10. URL: https://

www.sciencedirect.com/science/article/pii/S0306261914003596, doi:10.
1016/j.apenergy.2014.04.016.

Gokce, M.M., Duman, E., 2022. Performance Comparison of Simple Regression,
Random Forest and XGBoost Algorithms for Forecasting Electricity Demand,
in: 2022 3rd International Informatics and Software Engineering Conference
(IISEC), IEEE, Ankara, Turkey. pp. 1–6. URL: https://ieeexplore.ieee.
org/document/9998213/, doi:10.1109/IISEC56263.2022.9998213.

Hong, T., Fan, S., 2016. Probabilistic electric load forecasting: A tutorial
review. International Journal of Forecasting 32, 914–938. URL: https://

www.sciencedirect.com/science/article/pii/S0169207015001508, doi:10.
1016/j.ijforecast.2015.11.011.

33

http://arxiv.org/abs/1705.04378
http://dx.doi.org/10.1007/978-3-319-70338-1
http://dx.doi.org/10.1007/978-3-319-70338-1
http://arxiv.org/abs/1705.04378
https://www.proquest.com/docview/2108519352/abstract/1E240A87773F4682PQ/1
https://www.proquest.com/docview/2108519352/abstract/1E240A87773F4682PQ/1
http://dx.doi.org/10.3390/en11071636
http://dx.doi.org/10.1109/ACCESS.2022.3219832
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278071
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278071
http://dx.doi.org/10.1371/journal.pone.0278071
https://linkinghub.elsevier.com/retrieve/pii/S0377221715011698
https://linkinghub.elsevier.com/retrieve/pii/S0377221715011698
http://dx.doi.org/10.1016/j.ejor.2015.12.030
https://www.sciencedirect.com/science/article/pii/S0169207006000021
https://www.sciencedirect.com/science/article/pii/S0169207006000021
http://dx.doi.org/10.1016/j.ijforecast.2006.01.001
http://dx.doi.org/10.1016/j.ijforecast.2006.01.001
http://ieeexplore.ieee.org/document/5519486/
http://dx.doi.org/10.1109/MPER.1982.5519486
https://ieeexplore.ieee.org/document/10176934
http://dx.doi.org/10.1109/ICETCI57876.2023.10176934
http://dx.doi.org/10.1109/ICETCI57876.2023.10176934
https://www.sciencedirect.com/science/article/pii/S0306261914003596
https://www.sciencedirect.com/science/article/pii/S0306261914003596
http://dx.doi.org/10.1016/j.apenergy.2014.04.016
http://dx.doi.org/10.1016/j.apenergy.2014.04.016
https://ieeexplore.ieee.org/document/9998213/
https://ieeexplore.ieee.org/document/9998213/
http://dx.doi.org/10.1109/IISEC56263.2022.9998213
https://www.sciencedirect.com/science/article/pii/S0169207015001508
https://www.sciencedirect.com/science/article/pii/S0169207015001508
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1016/j.ijforecast.2015.11.011


Hyndman, R., Koehler, A., 2006. Another look at measures of forecast accuracy.
International Journal of Forecasting 22, 679–688. doi:10.1016/j.ijforecast.
2006.03.001.

Ibrar, M., Hassan, M.A., Shaukat, K., link will open in a new tab Link to
external site, t., Alam, T.M., link will open in a new tab Link to exter-
nal site, t., Khurshid, K.S., Hameed, I.A., link will open in a new tab Link
to external site, t., Aljuaid, H., Luo, S., 2022. A Machine Learning-Based
Model for Stability Prediction of Decentralized Power Grid Linked with Re-
newable Energy Resources. Wireless Communications & Mobile Comput-
ing (Online) 2022. URL: https://www.proquest.com/docview/2709592533/
abstract/2B4459B91E9F47B5PQ/4, doi:10.1155/2022/2697303.

Ismail, A., Baysal, M., link will open in a new window Link to
external site, t., 2023. Dynamic Pricing Based on Demand Re-
sponse Using Actor–Critic Agent Reinforcement Learning. Energies 16,
5469. URL: https://www.proquest.com/docview/2843057304/abstract/

4F9785526E5B427FPQ/1, doi:10.3390/en16145469.
Jiang, X., Jiang, M., Zhou, Q., 2023. Day-Ahead PV Power Forecasting Based on
MSTL-TFT. URL: http://arxiv.org/abs/2301.05911, doi:10.48550/arXiv.
2301.05911, arXiv:2301.05911.
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Appendix

Appendix A - Codes

7.0.1 Data Cleaning and Exploration

Link to code: https://github.com/ajcryan/ZZSC9020-project-group-p/blob/
main/src/Data_Cleaning_And_Exploration.ipynb

Figure 7.1: Data Cleaning And Exploration.ipynb

7.0.2 XGBoost Model

Link to code: https://github.com/ajcryan/ZZSC9020-project-group-p/blob/
main/src/XGBoost_Model.ipynb
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Figure 7.2: XGBoost Model.ipynb

7.0.3 Neural Network Model

Link to code: https://github.com/ajcryan/ZZSC9020-project-group-p/blob/
main/src/Neural_Network_Model.ipynb

Figure 7.3: Neural Network Model.ipynb
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Appendix B - Tables

7.0.4 Data Summaries

1) File: totaldemand nsw.csv

Contains total electricity demand values in NSW from 01/01/2010 to 01/08/2022.
(File size: 43.915 MB)

Table 7.1: Total Demand Variables

Column Name Data Type Description
DATETIME datetime64[ns] Datetimes in 5-minute intervals from

01/01/2010 to 01/08/2022.
REGIONID object Contains the region in which demand was

measured. ’NSW1’ is the only region present
in this data set.

TOTALDEMAND float64 Total power demand measured in megawatts.

2) File: forecastdemand nsw.csv

Contains AEMO’s electricity demand forecasts in NSW from 01/01/2010 to 01/08/2022.
(File size: 769.555 MB)

Table 7.2: Forecast Demand Variables

Column Name Data Type Description
DATETIME datetime64[ns] Datetimes in 30-minute intervals from

01/01/2010 to 01/08/2022. Each datetime
is repeated 71 times based on forecasts made
at different time horizons.

REGIONID object Contains the region in which demand was
measured. ’NSW1’ is the only region present
in this data set.

FORECASTDEMAND float64 Forecast power demand measured in
megawatts.

PREDISPATCHSEQNO int64 A unique identifier attached to each model
forecast.

PERIODID int64 Represents the number of periods (30-minute
intervals) of the forecast horizon.

LASTCHANGED datetime64[ns] Datetime representing when the model made
the forecast.
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3) File: temperature nsw.csv

Contains temperature data from Bankstown airport from 01/01/2010 to 01/08/2022.
(File size: 8.195 MB)

Table 7.3: Temperature Variables

Column Name Data Type Description
DATETIME datetime64[ns] Datetimes in 30-minute intervals from

01/01/2010 to 01/08/2022.
LOCATION float64 Contains the location at which temperature

was measured. 94766 is the only location
present in this data set.

TEMPERATURE float64 Temperature measured in degrees Celsius.
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